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ABSTRACT

Using statistical modeling in the wavelet domain, we address the
problem of image denoising. Despite being effective, the
dencised images can suffer from the Gibbs-like artifacts, like
ringing around the edges and speckles in the smooth regions. We
employ shift-invariant (S1) wavelet denoising in order to reduce
these unpleasant artitacts. Not only is the visual quality ercatly
" improved but also a PSNR gain of about 0.7~0.9 dB is obtained.
The proposed approach, siPAB, outperforms siHMT, which 1s a
competitive ST wavelet denoising approach, by 0.1~0.5 dB.
Keywords: Shift-invariant wavelet transform, image denoising,
mnterscale statistics.

1. INTRODUCTION

In a Bayestan wavelel denoising approach [1-4, 6-10]. a
prior is first specified for the wavelel coefficients of the
unknown image, and then the Bayesian estimate is
computed.

However, the simple Gaussian prior is not
appropriate. The actual density of the wavelet coefficients
usually has a marked peak at zero and heavy tails. The
Gaussian mixture model (GMM) [4] and the generalized
Gaussian distribution (GGD) [9] are commonly used
instead. Although GGD is more accurate, GMM is used in
this paper due to its simple form.

Morcover, the wavelet coefficicnts are not
independent [10]. Statistical correlations like interscale
dependency [6, 10] and intrascale dependency {8] have
been exploited in image denoising. A hidden Markov tree
(HMT) was employed by Crowse et al. {0] to capture the
inferscale dependency. However, HMT is computationally
costly in the training stage. To overcome this [10]
introduced nine meta-parameters to eliminate the training
stage, leading to a scheme called uHMT. Alternatively, [3]
established that the density of the wavelet coefTicients can
be well fitted by a 3-mode GMM (section 2). The PAB [3]
approach dispenses with the HMM and yet the
performance favorably comparcs with HMM based
approaches, like HMT and uHMT.

The PAB approach suffers from some visual artifacts,
usually in the form of Gibbs-like ringing around the edges
and speckles in smooth regions. This is similar to other
traditional (maximally decimated) wavelet denoising
approaches. The reason lies in the lack of shift invariance
(SI). Coifman and Donoho [5] proposed SI wavelet
denoising by “cycle-spinning”. An improvement of about
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0.8~1 dB PSNR [2. 10] has been reported for SI wavelet
denoising. In this paper. we extend the PAB approach {3]
to SI wavclet denoising, which we call siPAB.

2. THE PAB APPROACH

[n [3]. only interscale dependency was employved. Given
their parent, the distribution of the child wavelel
cocfficients is modeled as a 3-mode GMM. The variances
for these 3 modes in the GMM are linearly dependent on
their parent. This is different from HMM-bascd
approaches, where the variances, predefined in uHMT
[10] or obtained by expectation-maximization algorithm
in HMT [6]. arc constant. Fig. 1 is a tyvpical conditional
density of the child in the vertical band of level 1. The
crux of the method in [3] lies in obtaining this conditional
density, which captures the statistics of the interscale
dependency between children and their parent. It consists
of two steps: variance estimation and Gaussian mixture
modeling.
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Fig. 1 The conditional density of the child in the vertical band of
level 1, the magnitude of whose parent coefticient lies between
10 and 11. The selid line denotes the conditional density, the
dotted one for the fixed mixture model, and the dashed one for
the Gaussian model.

2.1 Variance estimation

The following formula is employed to ecstimate the
variance field: o, = 4m, + B, where o, is the variance

of the child ¢ and s, is the magaitude of the
corresponding parent p. This stems from the intitive .

" observation that large coefficients persist across scales.

Thus, it can be assumed that the children are of
large/small variance if their parent has a large/small
magnitude. Fig. 2 shows this kind of dependency of level
1 on level 2. Other levels share this near-linear property.
Usually, in the same level, the horizontal band and the
vertical band show similar statistics, while the diagonal
band has a smaller variance assuming the magnitude of
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the parent is same, as it can be seen from fig. 2. Thus, the
true model becomes 4. pue = Aiovet pema®™ s  Biaset bt -
For the coarsest level. no parent exists. The parent-on-
child dependency is utilized to estimate the variance field
for the coarsest level. Table 1 lists the fitied parameters
for 4 and B [3].

Table 1: Paramelers for the empirical model.

LH HIL, H

Level T 85" "a T B | A | B
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Fig. 2 Variance field estimation in level 1. The solid line denotes
the horizontal band of level 1, the dotted one for the vertical
band and the dashed one for the diagonal band.

2.2 Gaussian mixture model

Like the marginal density of the wavelet cocfficients in
the whole band, the conditional densities of p(x_|x,)
and p(x, |x,) also appear non-Gaussian: marked peak at
zero and heavy tails. In PAB, as in Chipman ef al. [4], a
GMM is used to fit this type of non-Gaussian property. If
the variance ¢ for x is known, the following mixture
model is specified to fit this non-Gaussian property [3],
x~aN(0,00)+a,N(0,0;)+a;N(0,07) (1)
a =06,
a, =03, a,=0.1 and n =n, = 2.5 were experimentally
determined. They work well in [3] and the relation
a, fn} +a, +a,ni =1 approximately holds (e.g., Fig. 1).
For a noisy image, the noise-free wavelet coefficienis
are unknown and it is impossible to obtain the true
variances ¢ in the model mentioned above. In [3], a
substitute & for & was obtained from the denoised
parent coefficient for all except the coarsest level or from
its four noisy children for the coarsest level. With o,

known, the following MMSE estimator is used to estimate
the noisy coefficients

where o, =o/n , ¢,=c¢c and o;=n0o .
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3. EXTENSION TO SI WAVELET TRANSFORM

Here, we extend thc PAB approach [3] to SI wavelet
denoising in order to reduce the ringing and speckle
effects. The idea of SI wavelet denoising [3] is simple:
first, to circularly shift the image; second, to demoise all
the shified images; last, to align and average over the
denoised images. This stratcgy aims 1o “average out” the
translation dependency in maximally decimated wavelet
transform, and was coined as cycle-spinning |5].
However, the dircct implementation of Average [Shift-
Denoise-Unshift] will have computational complexity

O(@*) . In fact, eycle-spinning can be implemented in an
undecimated wavelet transform, where the complexity
reduces to O(nlogn) .

The PAB approach [3] can be easily extended to the
undecimated wavelet transform. However, the relationship
between parent and child is a little different in the
undecimated and decimated representations. In the
decimated wavelet transform, cach parent has four
children, while the wavelet trees in an undecimated
representation overlap-—the same coefficients appear in
more than one tree. This redundancy introduces a 1-1
parent-child relationship. The change from a 1-4 parent-
child relationship to a 1-1 relationship makes only a very
small change in the top-down procedure to estimate
variances. In the traditional decimated 1-4 scheme. the
variance estimate for a node, in all except the coarsest
level, is obtained from its denoised parent, and therefore
the 1-1 scherme can retain the same character, However, at
the coarsest level, since the node has no parent, its
varjance is estimated from its four neisy children in the
decimated 1-4 scheme. Now, with a 1-1 relationship, only
one noisy child node is available for each parent at the
coarsest level. In order to reduce the noise effect, the
variance for a node p in the coarsest level is estimated
from the average of the magnitudes of five nodes, which
consist of its child ¢ and its four necarest neighbors
(denoted by A) in the finer level, as in fig. 3.

We summarize the approach below:

1. Non-decimated wavelet transform.

From coarsest to finest, compute the denoised

coefficients

a. Linearly estimate the variance based on its

denotsed parent (five noisy children for the
coarsest level) according to table 1.
b. Compute denoised coefficients from (2).
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3. Reconstruct by the undecimated IDWT.

p

Fig. 3 Five coctlicients for the estimation ol variance & ’ in the

coarsest level.

4. EXPERIMENTAL RESULTS AND CONCLUSION

As in [3. 10]. the Daubechies’ length-8 wavelet D4 [7] is
emploved to decompose the images into four levels. In
table 2, the resulis of PSNR for 11 images [10] of size
256x256 arc listed. Compared wilh the PAB approach,

this SI-wavelet denoising approach gains an improvement
of 0.7-0.9 dB, similar to the gains in other SI wavelct
approach [2, 10]. It also outperforins siHMT with a gain
of 0.1~0.5 dB.

A visual display of the image “bridge” can be found
in figure 4. A noticcable improvement of visual quality in
the denoised images by siPAB can be easily observed,
over thosc denoised by PAB, because both the rings and
the speckles arc greatly climinated. To compare siPAB
and siHMT, in figure 5 we particularly focus on the bridge
image to compare the visual effect bccause the PNSR
indexes for two approaches, used to denoise this image,
are almost same. Note: it is a little difficult to comparc the
visual cffects, becausc of the similarity as reflected in the
near identical PSNR indexcs for two approaches. By
taking a detailcd look at the images, we can sce that
SiPAB perforins slightly belter than siHMT in preserving
the straight lincs., while the siHMT works sliglily better
than siPAB on the texture.

Table 2; Comparison of PSNR for difterent approaches with o, = 0.05/0.1/0.2

SiPAB si-HMT [10] PAB [3] uHMT [10]
Baby 33.0/30.0/26.9 33.1/29.6/26.3 32.0/28.8/25.9 32.4/28.9/25.8
Birthday 30.9/28.1125.6 29.6126.4/23.7 30.3/27.4/24.9 28.9/25.8/23.1
Boats 31.8/282/25.0 31.4127.4741 31.0/27.3R4.1 30.4/26.4723.3
Bridge 28.8/25.4/22.7 28.925.3R22.7 28.1724.8722.0 28.1724.6122.0
Buck 33.6/29.8/26. 4 33.7/29.6/25.8 328/28.8/25.2 3250847247
Building 30.5/27.2/24.0 30.4/26.6/23.5 29.7/26.3/23.0 2977259722 8
Camera 31.0/274/24.2 31.127.023.7 30.2726.523.3 3032627231
Clown 31.5/28.0/24.6 31.7/27.8/24.5 30.7/27.0/23.6 30.6/26.8/23.7
Fruit 33.1/29.8/26.5 33.3129.726 4 32.4/28.8/25.5 32.2/28.5/25 3
Kgirl 32.4/29.3/26.3 32.6/29.3/264 31.8/28.8/25 4 31.6/28 37254
Lena 31.2/27.7/24.9 311276245 30.4/26.9/24.1 3047267723 8
Average 31.41/28.05/25.01 31.28/27.61/24.51 30.66/27.2524 11 30.43/26.76/23.76
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Fig. 4, Image bridge (a), noisy version (b) with level of 0.1, dencised copies by (c) siPAB, (e) siHMT, (g) PAB, and (j)
uHMT, and their emror images. In order to have a visible scene, the crror images have been scaled at a same ratio. The darker
the pixel, the bigger the error magnitude. The SI wavelet denoising has an improved visual effect, which can be secn by
comparing siPAB with PAB and by comparing siHHMT with HMT. As siPAB and siHHIMT are concerned, it ts a little difficult
to compare the visual etffect, especially for the printed images, because the PSNR indexes are almost same, where PSNR for
siPAB is 25.42 and stHMT has an index of 25.36.
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Fig. 5, Two different portions of the bridge image and their error images for siPAB (the second row) and siHMT (the third
row). (a) siPAB performs a little better in preserving the structures, like the straight lines of the balustrade of the bridge, than
siHMT. (b) siHMT works slightly better than siPAB on the textured regions.
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