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ABSTRACT 

Using statistical uiodcluig in thc wavelet domain, we address the 
prohleni of image drnoising. Despite k i n g  etlkctive, the 
d'moisd images can sotTer from the Gihhs-like artifacts, like 
ringing around the dgcs aid syeckles in the siiioolh regions. We 
employ sliitl-invariant (SI) wavelet demising in order to reducc 
thest iuipleasant artifacts. Not only is the visual qukility grcally 
uiiprovcd hut also a PSNR gain of about 0 . 7 4 9  dB is ohtailid. 
The proposed approach, sipAB, outprrfoniis siHM'1, which is ii 
competitive SI wavclct daioisuit: approach, by 0. I4) .5  dB. 
Keyvords: Shift-invariant wavelet traiisfonn, image daioising, 
uittrscnlc statistics. 

1.  INTRODUCTION 

In a Bayesian wavelet dcnoising approach 11-1. 6-10]. a 
prior is first specified for the wavelet coefficients of the 
unknown image, and then the Bayesian estimate is 
computed. 

However. the simple Gaussian prior is not 
appropriate. The actual density of the wavelet coefficients 
usually has a marked peak at zero and heavy tails. The 
Gaussian mixture model (GMM) [4] and the generalized 
Gaussian distribution (GGD) 191 are commonly used 
instead. Although GGD is more accurate. GMM is used in 
this paper due to its simple form. 

Moreover. the wavelet coefficients are not 
independent [IO]. Statistical correlations like interscale 
dependency [6, IO] and intrascale dependency IS] have 
been exploited in image denoising. A hidden Markov tree 
(HMT) was employed by Crows ef al. 161 to capture the 
interscale dependency. However, HMT is computationally 
costly in the training stage. To overcome this [IO] 
introduced nine meta-parameters to eliminate the training 
stage, leading to a scheme called uHMT. Alternatively, 131 
established that the density of the wavelet coefficients can 
be well fitted by a 3-mode GMM (section 2). The PAB 131 
approach dispenses with the HMM and yet the 
performance favorably comparcs with HMM based 
approaches, like HMT and uHMT. 

The PAB approach suffers from some visual artifacts, 
usually in the form of Gibbs-like ringing around the edges 
and speckles in smooth regions. This is similar to other 
traditional (maximally decimated) wavelet denoising 
approaches. The reason lies in the lack of shift invariance 
(SI). C o i f m  and Donoho [SI proposed SI wavelet 
denoising by "cycle-spinning". An improvement of about 

0.8-1 dB PSNR [2, IO] Ius been reported for SI wavelet 
demising. In this paper. we extend tlie PAB approach [3] 
to SI wavclct dcnoising. which we call siPAB. 

2. THE PAB APPROACH 

In [3]. only interscalc dcpcndcncy was employed. Given 
their parent. tlic distribution of the child wavelet 
cocfficicnts is iiiodcled as a 3-iiiode GMM. Thc varianccs 
for tliesc 3 inodcs in the GMM are linearly dependent on 
their parent. This is different from HMM-bascd 
approachcs. where tlie variances. prcdcfincd in uHMT 
[IO] or obtained by expectation-ii~xiiiuzation algorithm 
in HMT 161. are const'ant. Fig. I is a typical conditional 
density o f  the child in the vertical band of level 1. The 
crux o f  tlic inclhod in [3] lies in obtaining this conditional 
density, which captures the statistics of the interscale 
dependency bctwcen children and their parent. It consists 
of two steps: variance estiination and Gaussian mixture 
modeling. 

Fie. 1 : vertical band of 
I 

level I ,  the magnitude of whose parent coefficient lies khveen 
I O  and 11. The solid line denotes the conditional density, the 
dotted one for the fixed mixture model, and the dashed one for 
the Gaussian model. 

2.1 Variance estimation 

The following formula is employed to estimate the 
variance field: ue = A m ,  + B , where mc is the variance 

of the child c and mp is the magnitude of the 
corresponding parent p .  This stems from thc intuitive 
observation that large coefficients persist across scales. 
Thus, it can be assumed that the children are of 
large/smaU variance if their parent has a large/small 
magnitude. Fig. 2 shows this kind of dependency of level 
1 on level 2. Other levels share this near-linear p rope3 .  
Usually, in the same level, the horizontal band and the 
vertical band show similar statistics, while the diagonal 
band has a smaller variance assuming the magnitude of 
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thc parent is same. as it can be seen from fig. 2. Thus. the 

For the coarsest level. no parent exists. The parent-on- 

%,g(.v.a",) where p(nl I ?;) = lnodcl becoillcs u c J e d J d  = A ~ ~ ~ ~ i ~ ~ ~ , , ~ ' ' p  + ' L ~ i , m r , ,  . 

child dependency is utilized to estiinate thc variance ficld 
For thc coarsest Icvcl. Tablc I lists the fitrcd paninetcrs 

k q g ( v . 0 , )  
FI 

I 
g(,v,u,) =--cxp(-t) 

forA and B [3]. &U," U!" 

Level 

I 
2 

and 

LH HI H n  
A I B  A I B  A I B  
3.5 1 0.26 3.7 I 0.26 2.3 1 11.15 
8.5 I 0.38 I O  I 0.41 6.5 I 0.29 

3 I 24 I 0.35 I 311 I 0.35 I 13.5 I 0.6 
4 I 60 1 1.9 I 62 1 2 . 4  I 37 1 1.1 

: e  :c , * m x .% ,: s-'dt 
Fig. 2 Variance field estunatioii in level 1 .  The solid luic denotes 
the horizontal halid of level 1, t l~ i  dotted one for the vt?lical 
band and tlie h h r d  one for the diagonal band. 

2.2 Gaussian mixture model 

Like the margin4 dcnsity of the wavelet coefficients in 
the whole band, the conditional densities of p(x< I x p )  

and p ( x ,  I x,) also appear non-Gaussian: marked peak at 
zero and heaw tails. In PAB, as  in Clupman et al. [I], a 
Gh4M is used to fit this type of non-Gaussian propelty. If 
the variance o for x is known, the following inixture 
model is specified to fit this non-Gaussianpropelty [3], 

where uI = u l n l  , U, = U  and u3 = n,u . a, =0.6 , 
a2 = 0.3, a, = 0.1 and n, = n3 = 2.5 were exp?rimentally 
determined. They work well in [3] and the relation 
a, In: + a2 + a,.: = 1 approximately holds (e.g., Fig. 1). 

For a noisy image, the noise-free wavelet coefficients 
are unknown and it is impossible to obtain the m e  
variances U in the model mentioned above. In [ 3 ] ,  a 
substitute d. for U was obtained froin the denoised 
parent coefficient for all except the coarsest level or from 
its four noisy children for the coarsest level. With CT, 
known, the following MMSE estimator is used to estimate 
the noisy coefficients 

x- a,N(O,u:) +a,N(O,U;)  +a,N(O,u:) (1) 

3. EXTENSION TO SI WAVELET TRANSFORM 

Here. we extend thc PAB approach [ 3 ]  to SI wavelet 
denoising in order lo reduce thc ringing and spcckle 
effects. Thc idea of SI wavelet dcnoising [ j ]  is siinplc: 
first. to circularly shift the image: second. lo denoise all 
the shiftcd images: last, to align and avcnge over tlic 
denoiscd imagcs. This stratcgy aiiils to "averagc onC' thc 
tnnslotion dcpcndcncy in nmxiinally dcciinated wavelet 
tninsfonn. and \!'as coined as cycle-spinning 151. 
Howcvcr. the dircct implementation of Avcnge phift- 
Deiioise-Unshift] will have computational complexity 
O ( d )  . In fact. cyclc-spinning can be implemented in an 
undcciinated wavclet tnnsrorm. wherc the coinplcxity 
reduces to O(n logn) 

The PAB approach [ 3 ]  can be easily extendcd to thc 
undeciinated wavelet tnnsfonn. However, the relationship 
between parent and child is a little different in the 
undeciinated and decimated representations. In the 
decimated wavelet transform, each parent has four 
children, while the wavelet trees in an undeciinated 
representation overlap--the same coeficients a p p w  in 
more than one tree. This redundancy introduces a 1-1 
parent-cluld relationship. The change from a 1 4  parent- 
cluld relationship to a 1-1 relationship makes only a very 
sinal1 change in the top-down procedure to estimate 
variances. In the traditional decimated 1-4 scheme. thc 
variance estimate for a node, in all except the coarsest 
level, is obtained from its denoised parent, and therefore 
the 1-1 scheme can retain the same character. However, at 
the coarsest level, since the node has no parent, its 
variance is estimated fmm its four noisy children in the 
decimated 1-4 scheme. Now, with a 1-1 relationship, only 
one noisy child node is available for each parent at the 
coarsest level. In order to reduce the noise effect, the 
variance for a node p in the coarsest level is estimated 
from the avenge of the magnitudes of five nodes. which 
consist of its child c and its four nearest neighbors 
(denoted by A) in the finer level, as  in fig. 3 .  

We summarize the approach below: 
1. Non-decimated wavelet transform. 
2. From coarsest to finest, compute the demised 

coefficients 
a. Linearly estimate the variance based on its 

denoised parent (five noisy children for the 
coarsest level) according to table 1. 
Compute denoised coefficients from (2). b. 
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3 .  Reconstruct bv the undecimated IDWT 
............................................... ....... 

............... i .............. i .............. r': ............ 

....... ". ................ _: ................. ;.. 

E ............ ............ 6 ............. & ........... 

........... 

Fig. 3 I'ive cocllicieiits for the estiniation of vannuce 6, in tlic 
coarsest level. 

4. EXPERIMENTAL RESULTS AND CONCLUSION 

As in [3. IO]. the Daubeclues' lcngtlid wivclct D1 171 is 
employcd to decompose tlic images into four levels. In 
table 2. the results of PSNR for 11 images [IO] of size 
256x256 arc listed. Compared wit11 the PAB approach. 

this SI-wavelet dcnoising approach gains an  improvement 
of 0.7-0.9 dB. similar to the gains in otlier S I  wavelct 
approach [2_ IO]. It also outperfonns siHMT with a gain 
of 0.1-0.5 dB. 

A visual display of the image "bridgc" can be found 
in figurc 1. A noticeable improvement of visual quality in 
thc denoised images by s P A B  can be easily observed. 
over tliosc denoised by PAB, because both tlic rings and 
tlic speckles arc greatly eliminated. To compare siPAB 
,and siHMT. in figure 5 me particularly focus on the bridgc 
iinage to compare the visual effect bccause tlic PNSR 
indexes for two approaches. used to denoise this image, 
are alniost same. Note: it is a little difficult to comparc the 
visual cffccts. becansc of the similarity as rcflccted in tlic 
near identical PSNR indexes for hvo approaches. By 
t d ing  a dctailcd look at tlic iniages. wc can scc lliat 
siPAB perfonns sliglitly betlcr than sHMT in preserving 
tlie straight lincs. wlule thc sMMT works slightly bctter 
than siPAB on tlic texturc. 

Triblc 2: C ~ i i i ~ a r i ~ ~ i i  ofPSNR fordifferait ammaclies with LT., = 0.0~/0 .11002 
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(c)siPAB 

(a) Original hridgc iniiiec 

. .. . . .. . 

(I,) Enur fur PAR 

(h) Noise Icvsl=O. I 
. .  

( e )  sillhlT 

(i) IlhlT (j) Error for IIMT 

Fig. 4, hiiage bridge (a), noisy versioii (b) with level of 0.1, denoisrd copies by (c) siPAB, (e) siHMT, (g) PAB, aid (i) 
uHMT, and their error images. In ordn to havc a visible scene, the error images have been scaled at a sane ntio. The darker 
Uie pixel, the bigger the error magiuhide. The SI wavelet daioising has an improved visual effect, w,hich mi be mi by 
comparing sPAB with PAB and by comparing siHIvfT with HMT As siPAB and SM are concerned, it is a little ditticult 
to coniparr the visual effect, emcially for the printed images, because the PSNR indexes are almost same, where PSNR for 
siPAB is 25.42 and SM has i n  ind& of 25.36. 

siPAB 

siHMT 

(4 @) 
Fig. 5, Two different poltions of the bridge image and their error images for sipAB (the second row) and s i W  (the third 
row). (a) siPAB performs a little better in preserving the structures, like the stnight lines of the balustrade of the bridge. than 
siHMT (b) SW works slightly better than siPAB on the textured regions. 
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